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Motivation & Problem

• End-to-end RL can adapt but tends to be black-box; safety/legal require inter-
pretability.

• Two complementary angles:
– (A) Latent world-model + MaxEnt RL: interpretable perception via

decoded bird’s-eye masks.
– (B) ICCT: interpretable control via small crisp trees with sparse linear leaves.

• Goal: trustworthy, robust urban driving — fast learning, safe behavior,
human-auditable decisions.

(A) Latent MaxEnt RL: Formulation

MDP:M = ⟨S,A, R, T, γ, ρ0⟩, policy π(a |s).
MaxEnt RL in latent state zt:
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(Optimized with SAC for stability/exploration.)
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Model & Decoder

Chen Fig. 4: Sequential latent model with policy in zt and mask decoder.

Chen Fig. 6: Bird’s-eye semantic mask (map, route, objects, ego).
Key points
• Multi-modal inputs (camera+LiDAR) → compact zt.
• Decode zt to a 64×64×3 mask to explain perception.
• Train jointly: variational sequential model + SAC on zt; mask supervised only during training.
• Reward shaping: lane-keeping, speed compliance, collision/lat-accel penalties.

Results & Failure Modes

Chen Fig. 9: Reconstructions.

Chen Fig. 8: Learning curves.
• Latent-RL variants learn faster and reach higher asymptotes than classic deep RL baselines.
• Masks remain faithful (mean error ≈ 0.032), enabling human inspection.
• Failures: Rare/occluded objects can degrade masks, preceding control errors.

(B) ICCT: Interpretable Control via
Differentiable Trees

Goal: Directly learn a policy πθ(a|s) represented as a small, human-readable decision tree.
Interpretable Continuous Control Tree (ICCT): A tree where:
• Decision nodes are crisp rules on a single state feature: xk > bi.
• Leaf nodes are sparse linear controllers: ad = ∑ βdjxj + δd.
Key Idea: Differentiable Crispification. To enable gradient-based RL, the model uses a "fuzzy" form during
training that can be converted to a "crisp" interpretable form. This process is made differentiable.

Paleja Fig. 1: The ICCT framework.
Differentiable Tree-Building:
1. Node Crispification: A differentiable ‘one-hot‘ function selects the single most important feature for the decision

rule.
2. Outcome Crispification: A second ‘one-hot‘ function converts the sigmoid probability into a hard left/right branch

decision.
3. Sparse Leaf Controller: A ‘k-hot‘ selection identifies the most salient features for the linear controller at each leaf.
This allows direct optimization of a transparent policy using standard RL algorithms like SAC.

Algorithm 1: ICCT Action Choice

Input: ICCT I(·), state x, sparsity e, training flag t
Output: action a
1: NODE_CRISP: σ(α(w̃Tx− b))→ σ(α(wkxk − b))
2: OUTCOME_CRISP: σ(. . . )→ 1(α(wkxk − b) > 0)
3: ld ← INTERPRETABLE_NODE_ROUTING(x)
4: l′d ← ENFORCE_CONTROLLER_SPARSITY(e, ld)
5: if training flag t is TRUE then
6: Sample a ∼ N (l′d(x), γd) (exploration)
7: else
8: a← l′d(x) (exploitation)
9: end if

ICCT Results
ICCTs produce policies that are not only interpretable but also high-performing and efficient.

Paleja Fig. 5: Physical robot demonstration of an ICCT policy controlling a vehicle in a 14-car traffic scenario.

Paleja Fig. 8: Results.
Quantitative Highlights:
• High Performance: Matches or outperforms deep black-box models (MLPs) by up to 33% in complex au-

tonomous driving scenarios.
• Extreme Parameter Efficiency: Achieves top performance with a 300x-600x reduction in the number of

policy parameters compared to deep learning baselines.
• Verifiable & Robust: The simple tree structure is amenable to formal verification and was demonstrated on a

14-car physical robot platform, proving real-world applicability.

Methodology Comparison:

Both papers target interpretability in AD, but focus on different parts of the problem.
Paper (A) - Latent MaxEnt RL:
• Focus: Interpretable Perception.
• Answers: "What does the agent see?"
• Method: Learns a compressed latent state zt and uses a decoder to translate it into a human-understandable

bird’s-eye view mask.
• Limitation: The control policy π(a|zt) is still a black-box MLP.
Paper (B) - ICCT:
• Focus: Interpretable Control.
• Answers: "Why did the agent take this action?"
• Method: The policy itself is a white-box decision tree. The path from state to action is explicit and traceable.
• Limitation: Assumes a pre-processed, meaningful state vector.
Synergy: The two approaches are highly complementary. One could build a fully interpretable system by using model
(A) to generate semantic features from raw sensor data, which are then fed into the transparent ICCT policy (B).
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