Interpretable & Efficient Deep RL for Autonomous Driving

Motivation & Problem

« End-to-end RL can adapt but tends to be black-box; safety/legal requireMinter-
pretability.
« Two complementary angles:

—(A) Latent world-model + MaxEnt RL: interpretable perception via
decoded bird’s-eye masks.

— (B) ICCT: interpretable control via small crisp trees with sparse linear leaves.

e Goal: trustworthy, robust urban driving — fast learning, safe behavior,

human-auditable decisions.
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(A) Latent MaxEnt RL: Formulation

MDP: M = (S, A, R,T,~, py), policy w(a|s).
MaxEnt RL in latent state z;:
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Results & Failure Modes
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Chen Fig. 9: Reconstructions.
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Chen Fug. 8: Learning curves.
 Latent-RL variants learn faster and reach higher asymptotes than classic deep RL baselines.
« Masks remain faithful (mean error ~ 0.032), enabling human inspection.

e Failures: Rare/occluded objects can degrade masks, preceding control errors.
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qu}x E t; r(z, ar) — log me(ar | 2t)
(Optimized with SAC for stability/exploration.)
Mask quality (avg. pixel diff.): e ]{,zz W
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Model & Decoder
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Chen Fig. 4: Sequential latent model with policy in z; and mask decoder.
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Chen Fig. 6: Bird’s-eye semantic mask (map, route, objects, ego).
Key points

Multi-modal inputs (camera+LiDAR) — compact 2.

Decode z; to a 64 x64x3 mask to explain perception.

Train jointly: variational sequential model + SAC on z;; mask supervised only during training.
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(B) ICCT: Interpretable Control via
Differentiable Trees

Goal: Directly learn a policy my(als) represented as a small, human-readable decision tree.
Interpretable Continuous Control Tree (ICCT): A tree where:

« Decision nodes are crisp rules on a single state feature: x; > b;.

 Leaf nodes are sparse linear controllers: ag = = B4z + 0q4.

Key Idea: Differentiable Crispification. To enable gradient-based RL, the model uses a 'fuzzy' form during
training that can be converted to a 'crisp' interpretable form. This process is made differentiable.
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Output Controllers limited to k active features to maintain interpretability
(Section 4.2.3)

Paleja Fig. 1: The ICCT framework.
Differentiable Tree-Building:

1. Node Crispification: A differentiable ‘one-hot‘ function selects the single most important feature for the decision
rule.

2. Outcome Crispification: A second ‘one-hot’ function converts the sigmoid probability into a hard left /right branch
decision.

3. Sparse Leaf Controller: A ‘k-hot® selection identifies the most salient features for the linear controller at each leaf.

This allows direct optimization of a transparent policy using standard RL algorithms like SAC.

Reward shaping: lane-keeping, speed compliance, collision /lat-accel penalties.
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ICCT Results

[ICC'Ts produce policies that are not only interpretable but also high-performing and efficient.
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Paleja Fig. 5: Physzcal robot demonstration of an ICC'T policy controlling a vehicle in a 1/-car traffic scenario.
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Paleja Fig. 8: Results.

Quantitative Highlights:

« High Performance: Matches or outperforms deep black-box models (MLPs) by up to 33% in complex au-
tonomous driving scenarios.

« Extreme Parameter Efficiency: Achieves top performance with a 300x-600x reduction in the number of
policy parameters compared to deep learning baselines.

« Verifiable & Robust: The simple tree structure is amenable to formal verification and was demonstrated on a
14-car physical robot platform, proving real-world applicability.
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Algorithm 1: ICCT Action Choice

Input: ICCT Z(-), state x, sparsity e, training flag ¢
Output: action a
1: NODE_CRISP: o(a(w!x — b)) — o(a(wrzy — b))

2: OUTCOME_CRISP: o(...) — 1(a(wizr — b) > 0)
3: ly < INTERPRETABLE NODE_ROUTING(x)

4: I/, + ENFORCE_CONTROLLER_SPARSITY(e,l,)

b: if training flag ¢ is TRUE then

6: Sample a ~ N (l/(x),74) (exploration)

7. else

8 a<+[lj(x) (exploitation)

9: end if
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Methodology Comparison:

Both papers target interpretability in AD. but focus on different parts of the problem.

Paper (A) - Latent MaxEnt RL:

« Focus: Interpretable Perception.
« Answers: "What does the agent see?’

« Method: Learns a compressed latent state z; and uses a decoder to translate it into a human-understandable
bird’s-eye view mask.

 Limitation: The control policy 7(a|z;) is still a black-box MLP.

Paper (B) - ICCT:

« Focus: Interpretable Control.

« Answers: "Why did the agent take this action?”

« Method: The policy itself is a white-box decision tree. The path from state to action is explicit and traceable.

« Limitation: Assumes a pre-processed, meaningful state vector.

Synergy: The two approaches are highly complementary. One could build a fully interpretable system by using model
(A) to generate semantic features from raw sensor data, which are then fed into the transparent ICCT policy (B).
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