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Motivation & Problem

« End-to-end RL can adapt but tends to be black-box; safety/legal require
pretability.
« Two complementary angles:

—(A) Latent world-model + MaxEnt RL: interpretable perception via
decoded bird’s-eye masks.

—(B) ICCT: interpretable control via small crisp trees with sparse linear leaves.

« Goal: trustworthy, robust urban driving — fast learning, safe behavior,
human-auditable decisions.




(A) Latent MaxEnt RL: Formulation

MDP: M = (S, A, R,T,~, po), policy m(a|s).
MaxEnt RL in latent state z:

ma [ r(zt,ar) — log 7r¢(at|zt)]
(Optimized with SAC for stability/exploration.)
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Model & Decoder
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Chen Fig. J: Sequential latent model with policy in z, and mask decoder.
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Chen Fig. 6: Bird’s-eye semantic mask (map, route, objects, ego).

Key points

Multi-modal inputs (camera+LiDAR) — compact z;.

Decode z; to a 64x64x3 mask to explain perception.

Train jointly: variational sequential model + SAC on z;; mask supervised only during training.
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Reward shaping: lane-keeping, speed compliance, collision/lat-accel penalties.




Results & Failure Modes
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Chen Fig. 8: Learning curves.
+ Latent-RL variants learn faster and reach higher asymptotes than classic deep RL baselines.
» Masks remain faithful (mean error ~ 0.032), enabling human inspection.

« Failures: Rare/occluded objects can degrade masks, preceding control errors.




(B) ICCT: Interpretable Control via
Differentiable Trees

Goal: Directly learn a policy mg(a|s) represented as a small, human-readable decision tree.
Interpretable Continuous Control Tree (ICCT): A tree where:

« Decision nodes are crisp rules on a single state feature: xy > b;.
+ Leaf nodes are sparse linear controllers: ay = = fygz; + d4.

Key Idea: Differentiable Crispification. To enable gradient-based RL, the model uses a "fuzzy"' form during
training that can be converted to a "crisp" interpretable form. This process is made differentiable.
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Differentiable Tree-Building:

1. Node Crispification: A differentiable ‘one-hot® function selects the single most important feature for the decision
rule.

2. Outcome Crispification: A second ‘one-hot® function converts the sigmoid probability into a hard left/right branch

decision.
3. Sparse Leaf Controller: A ‘k-hot® selection identifies the most salient features for the linear controller at each leaf.

This allows direct optimization of a transparent policy using standard RL algorithms like SAC.




Algorithm 1: ICCT Action Choice

Input: ICCT Z(-), state x, sparsity e, training flag ¢
Output: action a

1: NODE_CRISP: o(a(Wwlx — b)) — o(a(wrzr — b))
: OUTCOME_CRISP: o(...) — 1(a(wpz; — b) > 0)
g+ INTERPRETABLE_NUDE_RUUTING(X)

', + ENFORCE_CONTROLLER_SPARSITY(e, )

- if training flag t is TRUE then

Sample a ~ N (I)(x),74)  (exploration)
celse

a < lj(x) (exploitation)

cend if
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ICCT Results

ICCTs produce policies that are not only interpretable but also high-performing and efficient.
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Paleja Fig. 5: Physical robot demonstration of an ICCT policy controlling a vehicle in a 14-car traffic scenario.
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Paleja Fig. 8: Results.




Quantitative Highlights:

« High Performance: Matches or outperforms deep black-box models (MLPs) by up to 33% in complex au-
tonomous driving scenarios.

+ Extreme Parameter Efficiency: Achieves top performance with a 300x-600x reduction in the number of
policy parameters compared to deep learning baselines.

« Verifiable & Robust: The simple tree structure is amenable to formal verification and was demonstrated on a
14-car physical robot platform, proving real-world applicability.




Methodology Comparison:

Both papers target interpretability in AD, but focus on different parts of the problem.
Paper (A) - Latent MaxEnt RL:

« Focus: Interpretable Perception.
« Answers: "What does the agent see?"

+ Method: Learns a compressed latent state z; and uses a decoder to translate it into a human-understandable
bird’s-eye view mask.

« Limitation: The control policy 7(a|z;) is still a black-box MLP.

Paper (B) - ICCT:

« Focus: Interpretable Control.

« Answers: "Why did the agent take this action?"

« Method: The policy itself is a white-box decision tree. The path from state to action is explicit and traceable.
« Limitation: Assumes a pre-processed, meaningful state vector.

Synergy: The two approaches are highly complementary. One could build a fully interpretable system by using model
(A) to generate semantic features from raw sensor data, which are then fed into the transparent ICCT policy (B).
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