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Abstract

Reinforcement learning (RL) agents traditionally assume a stationary environment, yet many real-world settings-from robotics to finance-exhibit evolving dynamics and reward
structures that violate this assumption. This non-stationarity manifests as drifting transition probabilities, shifting objectives, or co-learning agents, leading to outdated value
estimates, policy instability, and performance degradation. Motivated by the ubiquity of time-varying phenomena in practical applications, our work investigates algorithms that
provably adapt to changing MDPs without prior knowledge of drift magnitude or change points. We aim to (1) characterize the fundamental limits of learning under bounded
and unbounded non-stationarity, (2) design both model-based and model-free methods, leveraging sliding-window estimation, exponential forgetting, and optimism-driven
exploration, to minimize dynamic regret, and (3) extend these techniques to deep and multi-agent settings where high-dimensional representations and adversarial co-learners
exacerbate non-stationarity. Through theoretical analysis and empirical evaluation, we seek to deliver scalable RL solutions that maintain robust performance across a spectrum

of evolving environments.
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Introduction

Reinforcement learning (RL) provides a framework for sequential decision-making where
an agent interacts with an environment to maximize cumulative reward. This interaction
1s typically modeled as a Markov Decision Process (MDP), defined by a tuple
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where S is the state space, A the action space, P(- | s, a) the transition kernel, (s, a) the
reward function, and H the horizon. A policy 7(a | s) maps states to action distributions.
The agent’s objective in a stationary MDP i1s to find a policy maximizing the expected
return:
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In stationary settings, both P and r are fixed over time, allowing the optimal policy 7 to
be learned through repeated interaction.
Let time/episode ¢ € |T']. The environment is a time-varying MDP
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Two useful ways to formalize non-stationarity:

Pi(- | s,a), r(s,a) may depend on t.

(A) Bounded variation (drift budget). Define per-step variation and budgets
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Piecewise-stationary is a special case with finitely many change points; then B,, B, scale
with the number/magnitude of changes.

(B) Lipschitz (smooth drift). For all £, A > 1 and (s, a),
< L”I”Ap WI(PIH—A(° ‘ Sy CL),

with 1/ the 1-Wasserstein distance. (Set A = 1 for per-step drift.)

Goal: track the moving optimum.
Let
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Non-stationarity makes past data stale; algorithms must adapt (forget/discount old data)
while exploring to control estimation error under (B5,, B,) or (L, L,).
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Algorithm 1 RATS Algorithm

1. procedure RATS(sg, £y, D)

2. 1y <— ROOTNODE( s, t); MINIMAX (1), D); return arg max, ¢, children ¥ -action
3. end procedure

4. function MiNniMaXx (v, D)

5: if © 1s decision node tl;en

HEURISTICVALUE(V.state), terminal or v.depth = D

6: return v.value ¢<— < / .
| MaX,/epchildren MinmmMax(v', D), otherwise
7: else > chance node at time ¢
8: return v.value<— min [ )+ g p(v | v)Minmmax (v, D)
Al ]
. R)e ‘0 V'€v.children
9: end if

10. end function

The Blessing of Optimism

Problem. In drifting MDPs, naive sliding-window optimism can pick “optimistic” mod-
els with exploding diameter, giving bad dynamic regret. The fix 1s to add confidence
widening (extra optimism [2]) to the transition sets.

Confidence widening. For windowed estimates 7, p;, use

Hi(s,a) =47 :|r—r| <rad,;}, Hy(s,a;m)={p:

with widening 17 > 0. This extra optimism 1s crucial under drift.
Guarantee. With tuned window W and widening 7,
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dynamic regret. BORL (Bandit-over-RL) learns (W, 7) online and matches the same
bound without knowing (B,, B,).

Why “more” optimism? Widening keeps the optimistic model’s effective diameter con-
trolled (= D,,.x), avoiding the drift pitfall of tight sets.
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Algorithm 2 SWUCRL2-CW algorithm
Require: Time horizon 7', state space S, action space A, window size W, widening parameter 7

1. Initialize ¢t < 1, initial state s,
2. for episode m =1,2,...do
3, Set 7(m) < ¢, vp(s,a) < 0, and N,,,)(s, a) according to Eqn. (3), for all s, a

4 Compute confidence regions H,. (), H, (n)(1) according to Eqns. (4,5)

5: Compute a 1/+/7(m)-optimal optimistic policy

T < EVI(H, (), H

n);1/v/7(m))

6: while ¢ is not a multiple of W and v,,(s;, T,(s:)) < Nj<m>(st, Tm(s:)) do
0 Choose action a; < 7,,(s¢), observe reward R;(s¢, a;) and the next state s;
3: Update v, (s, az) < vp(sp,a) + 1,6 —t+ 1
9; if ¢ > T then
10: Terminate algorithm
11: end if
12: end while
13: end for

Results
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Figure 2: Discounted return of the three algorithms for various values of e.

€ RATS DP-snapshot DP-NSMDP
0 E[> 7] -0.026 0.48 0.47
CVaR -0.81 -0.90 -0.90
0.5 E[> 7] -0.032 -0.46 -0.077
' CVaR -0.81 -0.90 -0.81
1 ED 7| 0.67 -0.78 0.66
CVaR 0.095 -0.90 -0.033

Table 1: Expected return E[> 7] and CVaR at 5%.
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