
Non-Stationarity in RL Environments
Ali Najar1, Mazdak Teymourian1

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
1{anajar13750,mazdak.tey}@gmail.com

Abstract
Reinforcement learning (RL) agents traditionally assume a stationary environment, yet many real-world settings-from robotics to finance-exhibit evolving dynamics and reward
structures that violate this assumption. This non-stationarity manifests as drifting transition probabilities, shifting objectives, or co-learning agents, leading to outdated value
estimates, policy instability, and performance degradation. Motivated by the ubiquity of time-varying phenomena in practical applications, our work investigates algorithms that
provably adapt to changing MDPs without prior knowledge of drift magnitude or change points. We aim to (1) characterize the fundamental limits of learning under bounded
and unbounded non-stationarity, (2) design both model-based and model-free methods, leveraging sliding-window estimation, exponential forgetting, and optimism-driven
exploration, to minimize dynamic regret, and (3) extend these techniques to deep and multi-agent settings where high-dimensional representations and adversarial co-learners
exacerbate non-stationarity. Through theoretical analysis and empirical evaluation, we seek to deliver scalable RL solutions that maintain robust performance across a spectrum
of evolving environments.

Keywords: Non-stationary RL; non-stationary MDPs; policy optimization; dynamic regret.

Introduction
Reinforcement learning (RL) provides a framework for sequential decision-making where
an agent interacts with an environment to maximize cumulative reward. This interaction
is typically modeled as a Markov Decision Process (MDP), defined by a tuple

M = (S,A, P, r,H),

where S is the state space,A the action space, P (· | s, a) the transition kernel, r(s, a) the
reward function, andH the horizon. A policy π(a | s)maps states to action distributions.
The agent’s objective in a stationary MDP is to find a policy maximizing the expected
return:

V π(s) = Eπ

 H∑
h=1

r(sh, ah)

∣∣∣∣∣∣ s1 = s

 .

In stationary settings, both P and r are fixed over time, allowing the optimal policy π⋆ to
be learned through repeated interaction.
Let time/episode t ∈ [T]. The environment is a time-varying MDP

Mt = (S,A, Pt, rt, H), Pt(· | s, a), rt(s, a) may depend on t.

Two useful ways to formalize non-stationarity:

(A) Bounded variation (drift budget). Define per-step variation and budgets

Br :=
T−1∑
t=1

max
(s,a)

∣∣rt+1(s, a)−rt(s, a)
∣∣, Bp :=

T−1∑
t=1

max
(s,a)

∥∥Pt+1(· | s, a)−Pt(· | s, a)
∥∥
1
.

Piecewise-stationary is a special case with finitely many change points; then Br, Bp scale
with the number/magnitude of changes.

(B) Lipschitz (smooth drift). For all t,∆ ≥ 1 and (s, a),∣∣rt+∆(s, a)− rt(s, a)
∣∣ ≤ Lr∆, W1(Pt+∆(· | s, a), Pt(· | s, a)) ≤ Lp∆,

with W1 the 1-Wasserstein distance. (Set ∆ = 1 for per-step drift.)
Goal: track the moving optimum.
Let

π⋆
t ∈ argmax

π
V π
t,1(st,1), V π

t,1(s) := Eπ,Pt

 H∑
h=1

rt(sh, ah)

∣∣∣∣∣∣ s1 = s

 .

Non-stationarity makes past data stale; algorithms must adapt (forget/discount old data)
while exploring to control estimation error under (Br, Bp) or (Lr, Lp).

Risk-Averse Tree-Search

Decision node

Change node

Leaf node

Figure 1: RATS [1] (Risk-Averse
Tree-Search): a robust minimax plan-
ner for non-stationary MDPs that
treats nature as an adversary and picks
the action maximizing worst-case re-
turn over all Lipschitz-consistent evo-
lutions of rewards/transitions.

Algorithm 1 RATS Algorithm
1: procedure RATS(s0, t0, D)
2: ν0←RootNode(s0, t0); Minimax(ν0, D); return argmaxν ′∈ν0.children ν

′.action
3: end procedure
4: function Minimax(ν,D)
5: if ν is decision node then

6: return ν.value←
{

HeuristicValue(ν.state), terminal or ν.depth = D

maxν ′∈ν.children Minimax(ν ′, D), otherwise
7: else ▷ chance node at time t
8: return ν.value← min

(p,R)∈∆t
t0

[
R(ν) + γ

∑
ν ′∈ν.children

p(ν ′ | ν)Minimax(ν ′, D)
]

9: end if
10: end function

The Blessing of Optimism
Problem. In drifting MDPs, naive sliding-window optimism can pick “optimistic” mod-
els with exploding diameter, giving bad dynamic regret. The fix is to add confidence
widening (extra optimism [2]) to the transition sets.
Confidence widening. For windowed estimates r̂t, p̂t, use

Hr,t(s, a) = { r̃ : |r̃ − r̂t| ≤ radr,t }, Hp,t(s, a; η) = { p̃ : ∥p̃− p̂t∥1 ≤ radp,t + η },
with widening η > 0. This extra optimism is crucial under drift.
Guarantee. With tuned window W and widening η,

Õ
((

Dmax(Br +Bp)
)1/4

S2/3A1/2T 3/4
)

dynamic regret. BORL (Bandit-over-RL) learns (W, η) online and matches the same
bound without knowing (Br, Bp).
Why “more” optimism? Widening keeps the optimistic model’s effective diameter con-
trolled (≈ Dmax), avoiding the drift pitfall of tight sets.

1 H
(
⌊T/H⌋ − 1

)
H + 1 T· · ·

· · ·SWUCRL2-CW(W1, η1) SWUCRL2-CW(W⌊T/H⌋, η⌊T/H⌋)

EXP3.P

Algorithm 2 SWUCRL2–CW algorithm
Require: Time horizon T , state space S, action space A, window size W , widening parameter η

1: Initialize t← 1, initial state s1
2: for episode m = 1, 2, . . . do
3: Set τ (m)← t, νm(s, a)← 0, and Nτ (m)(s, a) according to Eqn. (3), for all s, a
4: Compute confidence regions Hr,τ (m), Hp,τ (m)(η) according to Eqns. (4,5)
5: Compute a 1/

√
τ (m)-optimal optimistic policy

π̃m← EVI(Hr,τ (m), Hp,τ (m)(η); 1/
√

τ (m))

6: while t is not a multiple of W and νm(st, π̃m(st)) < N+
τ (m)(st, π̃m(st)) do

7: Choose action at← π̃m(st), observe reward Rt(st, at) and the next state st+1
8: Update νm(st, at)← νm(st, at) + 1, t← t + 1
9: if t > T then

10: Terminate algorithm
11: end if
12: end while
13: end for

Results

0.0 0.2 0.4 0.6 0.8 1.0

ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

D
is

co
u

n
te

d
re

tu
rn

DP-NSMDP DP-snapshot RATS

(a) Discounted return vs ε, 50% of standard deviation.

−1.0 −0.5 0.0 0.5 1.0

Discounted return

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

ε = 0

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 0.5

DP-snapshot RATS DP-NSMDP

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 1

(b) Discounted return distributions ε ∈ {0, 0.5, 1}.

Figure 2: Discounted return of the three algorithms for various values of ε.

reflects a close to worst-case evolution for a policy aiming to the right-hand side goal. In between, the
misstep probability is proportionally balanced between left and right. One should note that changing ε
from 0 to 1 does not cover all the possible evolutions from MDPt0 but provides a concrete, graphical
illustration of RATS’s behavior for various possible evolutions of the NSMDP.

We tested RATS with dmax = 6 so that leaf nodes in the search tree are terminal states. Hence,
the optimal risk-averse policy is applied and no heuristic approximation is made. Our goal is to
demonstrate that planning in this worst-case NSMDP allows to minimize the loss given any possible
evolution of the environment. To illustrate this, we report results reflecting different evolutions of
the same NSMDP using the ε factor. It should be noted that, at t = 0, RATS always moves to the
left, even if the goal is further, since going to the right may be risky if the probabilities to go Up
and Down increase. This corresponds to the careful, risk-averse, behavior. Conversely, DP-snapshot
always moves to the right since MDP0 does not capture this risk. As a result, the ε = 0 case reflects a
favorable evolution for DP-snapshot and a bad one for RATS. The opposite occurs with ε = 1 where
the cautious behavior dominates over the risky one, and the in-between cases mitigate this effect.

In Figure 2a, we display the achieved expected return for each algorithm as a function of ε, i.e. as a
function of the possible evolutions of the NSMDP. As expected, the performance of DP-snapshot
strongly depends on this evolution. It achieves high return for ε = 0 and low return for ε = 1.
Conversely, the performance of RATS varies less across the different values of ε. The effect illustrated
here is that RATS maximizes the minimal possible return given any evolution of the NSMDP. It
provides the guarantee to achieve the best return in the worst-case. This behavior is highly desirable
when one requires robust performance guarantees as, for instance, in critical certification processes.
Figure 2b displays the return distributions of the three algorithms for ε ∈ {0, 0.5, 1}. The effect seen
here is the tendency for RATS to diminish the left tail of the distribution corresponding to low returns
for each evolution. It corresponds to the optimized criteria, i.e. robustly maximizing the worst-case
value. A common risk measure is the Conditional Value at Risk (CVaR) defined as the expected
return in the worst q% cases. We illustrate the CVaR at 5% achieved by each algorithm in Table 1b.
Notice that RATS always maximizes the CVaR compared to both DP-snapshot and DP-NSMDP.
Indeed, even if the latter uses the true model, the optimized criteria in DP is the expected return.

7 Conclusion

We proposed an approach for robust planning in non-stationary stochastic environments. We intro-
duced the framework of Lipchitz Continuous Non-Stationary MDPs (NSMDPs) and derived the
Risk-Averse Tree-Search (RATS) algorithm, to predict the worst-case evolution and to plan optimally
w.r.t. this worst-case NSMDP. We analyzed RATS theoretically and showed that it approximates a
worst-case NSMDP with a control parameter that is the depth of the search tree. We showed empiri-
cally the benefit of the approach that searches for the highest lower bound on the worst achievable
score. RATS is robust to every possible evolution of the environment, i.e. maximizing the expected
worst-case outcome on the whole set of possible NSMDPs. Our method was applied to the uncertainty
on the evolution of a model. Generally, it could be extended to any uncertainty on the model used
for planning, given bounds on the set of the feasible models. The purpose of this contribution is to
lay a basis of worst-case analysis for robust solutions to NSMDPs. As is, RATS is computationally
intensive and scaling the algorithm to larger problems is an exciting future challenge.

8

0.0 0.2 0.4 0.6 0.8 1.0

ε

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

D
is

co
u

n
te

d
re

tu
rn

DP-NSMDP DP-snapshot RATS

(a) Discounted return vs ε, 50% of standard deviation.

−1.0 −0.5 0.0 0.5 1.0

Discounted return

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

ε = 0

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 0.5

DP-snapshot RATS DP-NSMDP

−1.0 −0.5 0.0 0.5 1.0

Discounted return

ε = 1

(b) Discounted return distributions ε ∈ {0, 0.5, 1}.

Figure 2: Discounted return of the three algorithms for various values of ε.

reflects a close to worst-case evolution for a policy aiming to the right-hand side goal. In between, the
misstep probability is proportionally balanced between left and right. One should note that changing ε
from 0 to 1 does not cover all the possible evolutions from MDPt0 but provides a concrete, graphical
illustration of RATS’s behavior for various possible evolutions of the NSMDP.

We tested RATS with dmax = 6 so that leaf nodes in the search tree are terminal states. Hence,
the optimal risk-averse policy is applied and no heuristic approximation is made. Our goal is to
demonstrate that planning in this worst-case NSMDP allows to minimize the loss given any possible
evolution of the environment. To illustrate this, we report results reflecting different evolutions of
the same NSMDP using the ε factor. It should be noted that, at t = 0, RATS always moves to the
left, even if the goal is further, since going to the right may be risky if the probabilities to go Up
and Down increase. This corresponds to the careful, risk-averse, behavior. Conversely, DP-snapshot
always moves to the right since MDP0 does not capture this risk. As a result, the ε = 0 case reflects a
favorable evolution for DP-snapshot and a bad one for RATS. The opposite occurs with ε = 1 where
the cautious behavior dominates over the risky one, and the in-between cases mitigate this effect.

In Figure 2a, we display the achieved expected return for each algorithm as a function of ε, i.e. as a
function of the possible evolutions of the NSMDP. As expected, the performance of DP-snapshot
strongly depends on this evolution. It achieves high return for ε = 0 and low return for ε = 1.
Conversely, the performance of RATS varies less across the different values of ε. The effect illustrated
here is that RATS maximizes the minimal possible return given any evolution of the NSMDP. It
provides the guarantee to achieve the best return in the worst-case. This behavior is highly desirable
when one requires robust performance guarantees as, for instance, in critical certification processes.
Figure 2b displays the return distributions of the three algorithms for ε ∈ {0, 0.5, 1}. The effect seen
here is the tendency for RATS to diminish the left tail of the distribution corresponding to low returns
for each evolution. It corresponds to the optimized criteria, i.e. robustly maximizing the worst-case
value. A common risk measure is the Conditional Value at Risk (CVaR) defined as the expected
return in the worst q% cases. We illustrate the CVaR at 5% achieved by each algorithm in Table 1b.
Notice that RATS always maximizes the CVaR compared to both DP-snapshot and DP-NSMDP.
Indeed, even if the latter uses the true model, the optimized criteria in DP is the expected return.

7 Conclusion

We proposed an approach for robust planning in non-stationary stochastic environments. We intro-
duced the framework of Lipchitz Continuous Non-Stationary MDPs (NSMDPs) and derived the
Risk-Averse Tree-Search (RATS) algorithm, to predict the worst-case evolution and to plan optimally
w.r.t. this worst-case NSMDP. We analyzed RATS theoretically and showed that it approximates a
worst-case NSMDP with a control parameter that is the depth of the search tree. We showed empiri-
cally the benefit of the approach that searches for the highest lower bound on the worst achievable
score. RATS is robust to every possible evolution of the environment, i.e. maximizing the expected
worst-case outcome on the whole set of possible NSMDPs. Our method was applied to the uncertainty
on the evolution of a model. Generally, it could be extended to any uncertainty on the model used
for planning, given bounds on the set of the feasible models. The purpose of this contribution is to
lay a basis of worst-case analysis for robust solutions to NSMDPs. As is, RATS is computationally
intensive and scaling the algorithm to larger problems is an exciting future challenge.

8

Figure 2: Discounted return of the three algorithms for various values of ϵ.

ϵ RATS DP-snapshot DP-NSMDP

0
E[
∑

r] -0.026 0.48 0.47
CVaR -0.81 -0.90 -0.90

0.5
E[
∑

r] -0.032 -0.46 -0.077
CVaR -0.81 -0.90 -0.81

1
E[
∑

r] 0.67 -0.78 0.66
CVaR 0.095 -0.90 -0.033

Table 1: Expected return E[
∑

r] and CVaR at 5%.

References
[1] Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-

case approach using model-based reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, volume 32, 2019.

[2] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism, 2020.

